# atl = read.csv("/Users/ishaandave/Desktop/CDC-Leidos/Data/Atlas/AtlasPlusTableData-nygafl16.csv")
all = (read.csv("C:/Users/yhd8/Desktop/Data/Atlas/AtlasPlusTableData-allstates2016.csv", stringsAsFactors=FALSE))
names(all)[1] = "state"
all$Cases = as.numeric(gsub(",","", all$Cases))
hhsRegions = readxl::read_xlsx("C:/Users/yhd8/Desktop/Data/Atlas/HHS Regions.xlsx")
names(hhsRegions) = c("state", "division")
hhsRegions$state = tolower(hhsRegions$state)
# atl$Cases = as.numeric(gsub(",", "", atl$Cases))
#
# num = as.numeric(gsub(",","",atl$Cases))
# atl[,'Cases'] = num
#
# atl = atl[atl$Cases > 0 , ]
# atlState = aggregate(atl$Cases, by = list(atl$Geography), FUN = sum)
#
#
#
#
# atlExpand <- atl[rep(row.names(atl), atl$Cases), 1:4]
#
#
#
# allState = aggregate(all$Cases, by = list(all$Geography), FUN = sum)
all2 = all[all$Cases != "0" & !is.na(all$Age.Group) & !is.na(all$Cases) , ]
all2$stateAbb = state.abb[match(as.character(all2$state),state.name)]
all2$division = hhsRegions$division[match(toupper(all2$state), toupper(hhsRegions$state))]
expand <- all2[rep(row.names(all2), all2$Cases), c(1:4,7)]
# fun = aggregate(expand, by = list(expand$Geography, expand$Race.Ethnicity), FUN = length, drop = T)
# fun$stateAbb = state.abb[match(as.character(fun$Group.1),state.name)]
library(ggplot2)
library(dplyr)
library(plyr)
us_state_map = map_data("state")
HIVdists = function (race) {
#load us state map data
us_state_map = map_data("state");
us_state_map.mod = merge(us_state_map, hhsRegions, by.x = "region", by.y = "state")
us_state_map.mod = arrange(us_state_map.mod, division, order)
us_state_map.mod$division = as.numeric(as.character((us_state_map.mod$division)))
#map each state to a division
all2$state = tolower(all2$state)
us_state_map = us_state_map[, -c(3, 4, 6)]
f = merge(all2, hhsRegions, by = "state", all.x = T)
names(f)[1] = "state"
f$state = as.character(f$state)
latLong = data.frame(state = as.character(state.name),
long = state.center$x,
lat = state.center$y) %>%
right_join(f, by = "state")
new = aggregate(Cases ~ state, latLong, sum)
new$state = tolower(new$state)
race = as.character(race)
female = paste0(toupper(race), "_FEMALE")
male = paste0(toupper(race), "_MALE")
census2[, paste0("TOT_", toupper(race))] = census2[, female] + census2[, male]
totals = aggregate(census2[,c("TOT_POP", paste0("TOT_", toupper(race)))], by = list(census2$state), sum)
names(totals)[1] = "state"
totals$state = tolower(totals$state)
names(totals) = c("state", "totpop", paste0("n", race))
rates = merge(new, totals, by = "state")
rates$rate = rates$Cases / rates[, paste0("n", race)]
allhhs = merge(rates, hhsRegions, by = "state")
aggDivision = aggregate(allhhs[, c("totpop", paste0("n", race), "Cases")], by = list(allhhs$division), sum)
aggDivision[, paste0("rateAmong", toupper(race))] = aggDivision[, "Cases"] / aggDivision[, paste0("n", race)]
names(aggDivision)[1] = "division"
us_state_map.mod$rate = aggDivision[, paste0("rateAmong", toupper(race))][match(us_state_map.mod$division, aggDivision$division)]
map <- ggplot()
map = map + geom_polygon(data=us_state_map.mod, aes(x=long, y=lat, group=group, fill = rate))
map = map + scale_fill_gradient(low = "thistle2", high = "darkred")
map = map + ggtitle(paste0("Distribution of ", toupper(race), " Across America"))
map
}
#
#
#
#
# ##################################################################################
# ##################################################################################
# ##################################################################################
#
# ########################## USE THIS CODE FOR MAP ALL STATES#######################
#
# ##################################################################################
# ##################################################################################
# ##################################################################################
#
#
# library(maps)
# library(ggthemes)
# names(rates)[1] = "region"
# new$region = tolower(rates$region)
# states_map <- map_data("state", region = rates$region)
# new_map <- merge(states_map, rates, by = "region")
# newHHS = merge(new_map, hhsRegions, by = "region" )
# new_map <- arrange(new_map, group, order) # to sort polygons in right order
#
# ggplot(new_map, aes(x = long, y = lat, group = group, fill = rate)) +
# geom_polygon(color = "black") +
# coord_map("polyconic") + theme_tufte() + labs(x = "", y = "") +
# scale_fill_gradient2(low = "red", mid = "white",
# high = "blue", midpoint = 0, space = "Lab",
# na.value = "grey50", guide = "colourbar", aesthetics = "fill")
#
#
#
#
#
#
#
# #
# # blacks = expand[expand$Race.Ethnicity == "Black/African American",]
# #
# # allState$region = tolower(allState$Group.1)
# # allState$prop = allState$x/sum(allState$x)
# #
# #
# # allState$stateAbb = state.abb[match(allState$Group.1,state.name)]
# #
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.